

Acetate: mp 80°; Found: C, 54.31; H, 5.15; $C_{32}H_{36}O_{18}$ requires C, 54.2; H, 5.15; 1H NMR ($CDCl_3$): δ 6.26 (1H, *d*, J = 10 Hz, H-3), 7.65 (1H, *d*, J = 10 Hz, H-4), 7.40 (1H, *d*, J = 9 Hz, H-5), 6.90 (1H, *dd*, J = 9 and 2 Hz, H-6), 6.90 (1H, *d*, J = 2 Hz, H-8), coumarin protons 5.2 (4H, *m*), 4.92 (1H, *s*), 4.64 (1H, *q*, J = 12, 6 Hz), 4.13 (2H, *d*, J = 1.8 Hz); sugar protons and acetoxyl chemical shifts given in the text.

Acknowledgements—Our thanks are due to Prof. J. Shoji, School of Pharmaceutical Sciences, Showa University, Halanodai, Shinagawa-Ku, Tokyo 142, Japan, for a sample of apim. One of us (PSM) gratefully acknowledges the CSIR for the award of a senior research fellowship.

REFERENCES

1. Nair, A. G. R. and Subramanian, S. S. (1975) *Phytochemistry* **14**, 1135.
2. Anjaneyulu, A. S. R., Rao, K. J., Rao, V. K., Row, L. R., Subrahmanian, C., Pelter, A. and Ward, R. S. (1975) *Tetrahedron* **31**, 1277.
3. Anjaneyulu, A. S. R., Rao, A. M., Rao, V. K., Row, L. R., Pelter, A. and Ward, R. S. (1977) *Tetrahedron* **33**, 133.
4. Markham, K. R., Ternai, B., Stanley, R., Geigler, H. and Mabry, J. J. (1978) *Tetrahedron* **34**, 1389.
5. Austin, D. J. and Meyers, M. B. (1965) *Phytochemistry* **4**, 255.
6. Sakuma, S. and Shoji, J. (1981) *Chem. Pharm. Bull.* **29**, 2431.

Phytochemistry, Vol 24, No 8, pp 1863-1864, 1985
Printed in Great Britain

0031-9422/85 \$3.00 + 0.00
© 1985 Pergamon Press Ltd

(+)-CALOCEDRIN, A LIGNAN DIHYDROANHYDRIDE FROM *CALOCEDRUS FORMOSANA*

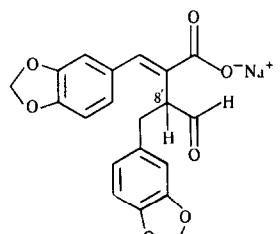
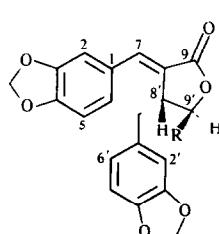
JIM-MIN FANG, SHYI-TAI JAN and YU-SHIA CHENG

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

(Revised received 28 November 1984)

Key Word Index—*Calocedrus formosana*; Cupressaceae; calocedrin; lignan dihydroanhydride; hubalactone.

Abstract—A novel lignan dihydroanhydride, (+)-calocedrin, was isolated from the wood of *Calocedrus formosana*. Its structure was determined to be *trans*- α -(3,4-methylenedioxybenzylidene)- β -(3,4-methylenedioxybenzyl)- γ -hydroxybutanolide by spectroscopic methods. Reduction of (+)-calocedrin resulted in an optically inactive lignan lactone, (\pm)-hibalactone.



INTRODUCTION

Calocedrus formosana, a member of the Cupressaceae, is an economically important tree indigenous to Taiwan [1]. Previous investigations [2, 3] on the heartwood have shown that it contains essential oil and a large quantity of terpenoid acids, such as shonanic, thujic and chaminic. Lignan components, such as hinokinin and hibalactone (savinin), have also been found.

RESULTS AND DISCUSSION

On continuing a study of the chemical constituents, the wood of *C. formosana* was collected in our campus and subjected to extraction with acetone. The combined extracts were concentrated and the residual contents separated on a silica gel column eluting with hexane-ethyl acetate gradients. After $(-)$ -hibalactone 1 (R_f , 0.30, hexane-acetone, 7:3) [4, 5], a novel lignan, namely $(+)$ -calocedrin, was eluted (R_f , 0.16). Calocedrin was recrystallized from ethanol, mp 187–188°, $[\alpha]^{25}_D + 6^\circ$ (c 0.9; acetone). The mass spectrum displayed the parent peak at

m/z 368 and the base peak at *m/z* 135, ascribable to the 3,4-methylenedioxybenzyl fragment. The IR spectrum showed the presence of hydroxyl (3560 cm^{-1}), lactone (1745 cm^{-1}) and olefin (1640 cm^{-1}) groups. Analyses of

$$1 \leq R \leq H$$

2 R \equiv OH

the ^1H and ^{13}C NMR spectra (Tables 1 and 2) revealed that the structure of (+)-calocedrin (2) was related to that of hibalactone. Calocedrin contained an unusual hemiacetal lactone ($-\text{CO}_2-\text{CHOH}-$) moiety as characterized in the ^1H NMR spectrum [6]. The hydroxyl proton, coupled by $\text{H}-9'$, exhibited as a doublet ($J = 5.5$ Hz) at δ 6.49 that was shifted by change of concentration or temperature. Similarly, the hemiacetal proton ($\text{H}-9'$) was coupled by the hydroxyl proton, displaying as a doublet ($J = 5.5$ Hz) at δ 5.67. Since irradiation at the resonance of $\text{H}-8'$ (δ 3.71) did not cause any apparent effect on the signal pattern of $\text{H}-9'$, these two protons should orient nearly orthogonally (*trans* configuration) according to the Karplus empirical rule.

The structures of calocedrin and hibalactone are chemi-

cally correlated. (+)-Calocedrin was reduced by sodium borohydride in the presence of sodium hydroxide [7]. The product (66% yield) exhibited compatible physical and spectroscopic properties (mp, mmp, HPLC, UV, IR and ^1H NMR) with those of (-)-hibalactone, except optical activity. An intermediate aldehyde 3, obtained from hemiacetal opening, was presumed to undergo epimerization prior to reduction under the alkaline conditions.

EXPERIMENTAL

Plant material. *Calocedrus formosana* (Florin) Florin was collected in the campus of the National Taiwan University. The skinned and air-dried wood (600 g) from branches 6–8 cm in diam. was selected for study. After extraction $\times 3$ with Me_2CO , the combined extracts were concentrated *in vacuo* to give 20 g of residue. Components were separated by CC on silica gel (230 g) and elution with hexane– EtOAc gradients.

(+)-*Calocedrin*. Crystals (105 mg) R_f 0.16 (hexane– Me_2CO , 7:3). Recrystallization samples from EtOH exhibited mp 187–188°; $[\alpha]_D^{25} + 6^\circ$ (c 0.9; Me_2CO). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ϵ): 237 (10 400), 294 (9560), 330 (11 600). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3560 (OH), 1745 ($\text{C}=\text{O}$), 1640 ($\text{C}=\text{C}$), 1600 (aromatic). MS m/z (rel. int.): 368 (15) [$\text{M}]^+$, 350 (9), 316 (10), 135 (100).

Reduction of (+)-calocedrin. NaOH (21 mg, 0.53 mmol) was added to a soln of (+)-calocedrin (49 mg, 0.13 mmol) in MeOH . After stirring for 10 min, NaBH_4 (6.5 mg, 0.17 mmol) was added and the mixture refluxed (80°) for 1 hr under N_2 . The mixture was cooled, acidified (pH 2) with HCl and extracted with CHCl_3 . The combined extracts were dried over Na_2SO_4 , filtered, concentrated and purified by TLC (R_f 0.30, hexane– Me_2CO , 7:3) to afford a 66% yield of (\pm)-hibalactone (30 mg, 0.085 mmol); mp 141.5–143° (authentic (–)-hibalactone, 142–143°, lit. [5] 147°), mmp 139–142°. The synthetic and authentic samples had the same R_f on HPLC (μ -Porasil column). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ϵ): 237 (12 100), 294 (10 800), 332 (14 140). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 1740, 1640, 1601. MS m/z (rel. int.): 352 (12) [$\text{M}]^+$, 217 (18), 135 (100).

Table 1. ^1H NMR spectral data of (–)-hibalactone 1 and (+)-calocedrin 2 ($\text{Me}_2\text{CO}-d_6$, 90 MHz, TMS, δ)

	1	2
H-7	7.49 (<i>d</i> , 1.5)*	7.43 (<i>d</i> , 1.5)
H-7'	2.56 (<i>dd</i> , 15, 10), 3.00 (<i>dd</i> , 15, 5)	2.65 (<i>dd</i> , 15, 10), 2.94 (<i>dd</i> , 15, 5)
H-8'	3.75 (<i>m</i>)	3.71 (<i>ddd</i> , 10, 5, 1.5)
H-9'	4.25 (<i>d</i> , 5)	5.67 (<i>d</i> , 5.5)
OCH_2O	5.92 (<i>s</i>), 6.02 (<i>s</i>)	5.93 (<i>s</i>), 6.07 (<i>s</i>)
OH		6.49 (<i>d</i> , 5.5)
Aromatic	6.60–7.14 (<i>m</i>)	6.75–7.29 (<i>m</i>)

*Numbers in parentheses indicate coupling constants (Hz).

Table 2. ^{13}C NMR spectral data of (–)-hibalactone 1 and (+)-calocedrin 2 ($\text{Me}_2\text{CO}-d_6$, 25.2 MHz, δ)

C	1	2	C	1	2
1	129.2 (<i>s</i>)	128.8 (<i>s</i>)	1'	132.7 (<i>s</i>)	132.2 (<i>s</i>)
2	108.8 (<i>d</i>)	108.7 (<i>d</i>)	2'	109.3 (<i>d</i>)	109.2 (<i>d</i>)
3	149.7 (<i>s</i>)	149.7 (<i>s</i>)	3'	149.1 (<i>s</i>)	148.9 (<i>s</i>)
4	148.6 (<i>s</i>)	148.4 (<i>s</i>)	4'	146.9 (<i>s</i>)	146.7 (<i>s</i>)
5	110.0 (<i>d</i>)	109.8 (<i>d</i>)	5'	109.5 (<i>d</i>)	109.4 (<i>d</i>)
6	122.9 (<i>d</i>)	122.7 (<i>d</i>)	6'	126.3 (<i>d</i>)	126.3 (<i>d</i>)
7	136.7 (<i>d</i>)	137.4 (<i>d</i>)	7'	38.2 (<i>t</i>)	36.2 (<i>t</i>)
8	127.8 (<i>s</i>)	126.9 (<i>s</i>)	8'	40.1 (<i>d</i>)	48.2 (<i>d</i>)
9	172.0 (<i>s</i>)	171.3 (<i>s</i>)	9'	70.1 (<i>t</i>)	99.8 (<i>d</i>)
OCH_2O	101.7 (<i>t</i>), 102.6 (<i>t</i>)	101.6 (<i>t</i>), 102.5 (<i>t</i>)			

Acknowledgement—The authors thank the National Science Council (ROC) for financial support.

REFERENCES

1. *Flora of Taiwan* (1975) Vol. 1, p. 538. Epoch, Taiwan.
2. Cheng, Y. S. and Lin, K. C. (1970) *Chemistry (Chinese)* 28.
3. Cheng, Y. S. and Lin, K. C. (1971) *Chemistry (Chinese)* 94.
4. Schrecker, A. W. and Hartwell, J. L. (1954) *J. Am. Chem. Soc.* 76, 4896.
5. Batterbee, J. E., Burden, R. S., Crombie, L. and Whiting, D. A. (1969) *J. Chem. Soc. C* 2470.
6. Moss, M. O., Robinson, F. V. and Wood, A. B. (1971) *J. Chem. Soc. C* 619.
7. Ferland, J. M., Lefebvre, Y., Deghenghi, R. and Wiesner, K. (1966) *Tetrahedron Letters* 3617